Upgradation of Pygas C₅ Cut to **Produce Isoprene and Other Products**

PEP Review 2016-06

April 2016

ihs.com

Rajesh Kumar Verma Principal Analyst

PEP Review 2016-06

Upgradation of Pygas C_5 Cut to Produce Isoprene and Other By-products

Rajesh Kumar Verma, Principal Analyst

Abstract

Pyrolysis gasoline, or Pygas, is a by-product of high-temperature naphtha cracking during ethylene and propylene production. Pygas is a naphtha-range product containing C_5 - to C_{12} -range aromatics, di-olefins, olefins, and paraffins. Pygas has a high octane value, and thus is potentially a good blending material for motor gasoline after some treatment. It can also be further fractionated in various cuts, which can be used as feedstock to produce high-value products.

The focus of this review is to evaluate the value of upgradation routes for the Pygas C_5 cut. In this study, we have done a technoeconomic evaluation of the most recent GTC Technology process to produce polymer-grade isoprene, piperylene, and dicyclopentadiene (DCPD). The main product of the process is isoprene, while piperylene and dicyclopentadiene are by-products. We also assess and describe the differences between the older GTC process and the newer (current) version of the technology. (It should be noted that the older version was never offered by GTC for license.)

This review also presents technical and economic evaluation of a process for production of polymer-grade DCPD. In addition, a CDEtherol[®] process for production of TAME (tertiary amyl methyl ether) based on an isoamylene-rich stream as feedstock is presented.

The process economics include estimated capital costs and production costs; variable cost, plant cash cost, and plant gate cost are also presented separately as part of net production costs. A brief market overview summarizes the global supply and demand end-use market and demand drivers.

This review is based on data drawn from public information sources (mainly patents) with guidance from GTC Technology. Aspen Simulation Workbook[™] models are developed for both the cases to evaluate the process economics (CAPEX and OPEX) with the help of the proprietary IHS PEP Cost index. Some of the technical and economic information used in the design was based on the author's own engineering judgment.

The production economics presented in this review are based on a US Gulf Coast location and are in English units. However, we also attach an iPEP Navigator module with the PDF file of this review to allow a quick conversion of the process economics in other major regions (i.e., China, Germany, Japan, the Middle East, and Canada). With the selection of each competing process, the module also allows production economics to be reported in each region in either English or metric units.

Contents

1 Summary	5
Differences between the IHS results and licensor-offered recoveries	6
2 Introduction	9
Overview	9
Industrial application of isoprene and other by-products	11
Isoprene	11
DCPD (dicyclopentadiene)	12
Piperylene	12
TAME (tertiary amyl methyl ether)	12
3 Isoprene separation from Pygas C ₅ cut	14
Solvents and chemical treatments	14
Industrial status	15
Isoprene	16
Piperylene	17
Dicyclopentadiene	17
Literature survey/patents summary	19
Process description	23
Isoprene concentration section $GT-C_5^{SM}$	24
Isoprene purification section GT-Isoprene™	25
Design basis	27
Material balance	28
Economics	30
Environmental concerns	37
4 Etherol process for TAME production	38
CDTech Etherol process	38
Chemistry	38
Catalyst	40
Industry outlook	41
Literature survey/patents summary	42
Process description	44
Design basis	47
Material balance	47
Economics	49
5 Ultrapure DCPD production	54
Literature survey/patents summary	54
Process description	55
Material balance	57
Economics	58

COPYRIGHT NOTCE AND DISCLAIMER © 2016 HS. For internal use of HS clients only. No portion of this report may be reproduced, reused, or otherwise distributed in any form without prior written consent, with the exception of any internal client distribution as may be permitted in the license agreement between client and HS. Content reproduced or redistributed with HS permission must display HS legal notices and attributions of authorship. The information contained herein is from sources considered reliable, but its accuracy and completeness are not warranted, nor are the opinions and analyses that are based on it, and to the extent permitted by law, IHS shall not be liable for any errors or omissions or any loss, damage, or expense incurred by reliance on information or any statement contained herein. In particular, please note that no representation or warranty is given as to the achievement or reasonableness of, and no reliance should be placed on, any projections, forecasts, estimates, or assumptions, and, due to various risks and uncertainties, actual events and results may differ materially from forecasts and statements of belief noted herein. This report is not to be construed as legal or financial advice, and use of or reliance on any information in this publication is entirely at client's own risk. IHS and the IHS logo are trademarks of IHS.

IHS[™] CHEMICAL

Tables

Table 1	Summary of isoprene production economics	7
Table 2	Typical composition for Pygas C ₅ cut (naphtha cracker) with components MW and TBP	10
Table 3	DCPD consumption in each sector	17
Table 4	Companies producing isoprene worldwide—Capacity and processes being used	18
Table 5	Design basis for isoprene process	27
Table 6	Component balance for C ₅ and isoprene section	28
Table 7	Isoprene separation from Pygas C ₅ cut by solvent extraction—Major equipment	31
Table 8	Isoprene separation from Pygas C ₅ cut by solvent extraction—Total capital investment	34
Table 9	Isoprene separation from Pygas C ₅ cut by solvent extraction—Production costs	35
Table 10	Companies producing TAME with capacities	41
Table 11	Design basis for etherol process	47
Table 12	Component balance for TAME plant	47
Table 13	TAME production on product basis—Major equipment	49
Table 14	TAME production on product basis—Total capital investment	50
Table 15	TAME production on product basis—Production costs	51
Table 16	Component balance for ultrapure DCPD plant	57
Table 17	DCPD production cost on product basis—Major equipment	58
Table 18	DCPD production cost on product basis—Total capital investment	59
Table 19	DCPD production cost on product basis—Production costs	60

Figures

Figure 1	Block diagram for naphtha cracker to Pygas C_5 cut	9
Figure 2	Industrial applications of isoprene	11
Figure 3	Isoprene production (based on processes used) and major isoprene consumers-2015	16
Figure 4	Consumption of piperylene in each sector	17
Figure 5	Two-stage solvent extraction process	21
Figure 6	Single-stage solvent extraction process	23
Figure 7	Effect of plant design capacity on CAPEX	36
Figure 8	Effect of plant operating capacity on product value	36
Figure 9	Effect of by-product prices (piperylene) on product value	37
Figure 10	Effect of temperature on ether yield	39
Figure 11	Interbed cooling arrangements	43
Figure 12	Helices packing	44
Figure 13	Effect of plant design capacity on CAPEX	52
Figure 14	Effect of unit operating level on product value	52
Figure 15	Effect of TAME feed price on product value	53
Figure 16	Effect of unit operating level on product value	61
Figure 17	Effect of unit plant design capacity on product value	61
Figure 18	Process schematic for GTC (C_5 + DCPD) section—GT- C_5^{SM}	67
Figure 19	Process schematic for GTC isoprene section—GT-ISOPRENE ^{S™}	68
Figure 20	Process schematic for ultrapure DCPD production	69
Figure 21	Process schematic for TAME production—CDEtherol [®] process	70

IHS Customer Care:

Americas: +1 800 IHS CARE (+1 800 447 2273); CustomerCare@ihs.com Europe, Middle East, and Africa: +44 (0) 1344 328 300; Customer.Support@ihs.com Asia and the Pacific Rim: +604 291 3600; SupportAPAC@ihs.com

