PEP Review 2019-13

Well Resources Ionikylation Process

Girish Ballal, Principal Analyst

Abstract

In the refinery context, alkylation refers to the reaction of light olefins, ideally butylenes, with isobutane to produce isooctane isomers. Alkylate has emerged as an ideal gasoline blending component due to the combination of high-octane value, absence of olefins or aromatics, low sulfur content, and low Reid vapor pressure (RVP). However, the challenges to alkylation are related to its production processes. The currently prevalent manufacturing processes use strong liquid acids such as hydrofluoric acid or concentrated sulfuric acid as catalysts. These are highly hazardous and corrosive chemicals with the potential of catastrophic hazards and liability for the operator in the case of an accidental release. Consequently, there is an increasing interest in developing and commercializing new technologies that eliminate this substantial operational risk. In this context, alkylation processes that use ionic liquids as catalysts have been recently developed and commercialized, eliminating hazards and risks associated with strong liquid acids.

In this review, we present technoeconomic analysis of the Ionikylation™ composite ionic liquid-based alkylation process, licensed by Well Resources, Inc. The processing capacity is 450,000 MTPY (~992 million lb/year) of alkylate production. This corresponds to approximately 12,500 b/d of alkylate.

The production economics assessment in this report is based on a US Gulf Coast (USGC) location. However, an iPEP Navigator module (an excel-based computer costing model developed by IHS Markit) is attached with this report to allow a quick calculation of the process economics for three other major regions as well—Germany, Japan, and China. For every process, the module also allows production economics to be reported in English or metric units in each region.

The technological and economic assessment of the processes is PEP’s independent interpretation of the companies’ commercial processes based on information presented in open literature, such as patents or technical articles, and may not reflect in whole or in part the actual plant configuration. We do believe that they are sufficiently representative of the processes and process economics within the range of accuracy necessary for economic evaluations of the conceptual process designs.
Contents

1 Introduction ... 4
2 Industry Review 4
 2.1 Gasoline Blending 4
 2.2 Gasoline Blending Components 5
 2.3 Regulatory Issues 6
 2.4 Supply and Demand 7
 2.5 Product Prices 10
3 Technology Review 11
 3.1 Chemistry 11
 3.2 Ionic liquid catalyzed alkylation 12
 3.3 Composite Ionic liquid catalyzed alkylation 13
 3.4 Well Resources Ionikylation™ process 15
4 Process description 17
 4.1 Section 100: Alkylation Reaction 17
 4.2 Section 200: Product Separation 18
5 Process Discussion 23
 5.1 Feedstock 23
 5.2 Byproducts 23
 5.3 Reaction and Product Recovery 23
 5.4 Catalyst 23
 5.5 Process Waste Effluents 24
 5.6 Materials of Construction 24
6 Cost estimates 27
 6.1 Fixed-capital costs 27
 6.2 Production costs 28
7 Environmental footprint 34

Tables

Table 1 Properties of Gasoline Blend Stocks 6
Table 2 Ionikylation™ Alkylation Processes 17
Table 3 Design Basis and Assumptions 19
Table 4 Stream Summary 20
Table 4 Stream Summary (continued) 21
Table 4 Stream Summary (continued) 22
Table 5 Major Equipment 25
Table 6 Utilities Summary 26
Table 7 Capital Costs 28
Table 8 Capital Costs by Sections 29
Table 9 Production Costs 30
Table 9 Production Costs (Concluded) 31
Table 10 Production Costs (Metric Units) 32
Table 11 Environmental Performance Factors 34
Figures

Figure 1 Composition of Average Gasoline Product ... 5
Figure 2 World: 2018 Refinery Product Distribution ... 7
Figure 3 World Gasoline Demand .. 8
Figure 4 World: 2018 Alkylate Production Capacity by Manufacturing Processes ... 8
Figure 5 World: 2018 Alkylate Capacity by Geographical Regions 9
Figure 6 Global Alkylation Capacity .. 10
Figure 7 USGC Long Term Gasoline Prices (FOB) .. 11
Figure 8 NMR Spectra of the composite ionic liquid with AlCl₄CuCl ion 14
Figure 9 Mechanisms for deactivation and reactivation of CIL catalyst 15
Figure 10 Ionikylation™ Alkylation Process .. 16
Figure 12 Effect of Plant Capacity on Production Costs 33